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TOPIC 9 – OPERATIONAL AMPLIFIER AND TRANSISTOR CIRCUITS

 Op-amp basic concepts and sub-circuits

 Practical aspects of op-amps; feedback and stability

 Nodal analysis of op-amp circuits

 Transistor models

 Frequency response of op-amp and transistor circuits

1 THE OPERATIONAL AMPLIFIER: BASIC CONCEPTS AND SUB-CIRCUITS

1.1 General

The operational amplifier is a universal active element

It is cheap and small and easier to use than transistors

It usually takes the form of an integrated circuit containing about 50 – 100 transistors; the circuit is
designed to approximate an ideal controlled source; for many situations, its characteristics can be
considered as ideal

It is common practice to shorten the term "operational amplifier" to op-amp

The term operational arose because, before the era of digital computers, such amplifiers were used
in analog computers to perform the operations of scalar multiplication, sign inversion, summation,
integration and differentiation for the solution of differential equations

Nowadays, they are considered to be general active elements for analogue circuit design and have
many different applications

1.2 Op-amp Definition

We may define the op-amp to be a grounded VCVS with a voltage gain (µ) that is infinite

The circuit symbol for the op-amp is as follows:

An equivalent circuit, in the form of a VCVS is as follows:

The three terminal voltages v+, v–, and vo are all node voltages relative to ground

When we analyze a circuit containing op-amps, we cannot use the constraint equation µ(v+ – v–)
since the gain µ is infinite

This property requires a different approach to the analysis of op-amp circuits

1.3 The Op-amp Virtual Short Model

We first assume that µ is finite, perform analysis in the conventional way, and then allow µ to tend
to infinity

Consider the following simple op-amp circuit; we wish to determine the output voltage vo:
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We can replace the op-amp symbol with its infinite voltage gain VCVS equivalent and then denote
the gain by a finite parameter µ:

We can apply KCL, bearing in mind that no current flows into the op-amp input terminals (they are
equivalent to an open circuit):

v− − vo
R

= −is           v− = vo − isR

Now we introduce the VCVS constraint:

� 

vo = µ vs − v−( )
Eliminating v– between these two equations, we have:

vo = µ vs − v−( ) = µ vs − vo + isR( )

vo =
µ vs + Ris( )
1+ µ

Also:

v− = vo − isR

=
µ vs + Ris( )
1+ µ

− isR

=
µvs − Ris
1+ µ

We now let µ → ∞:

� 

vo = vs + Ris
This equation is the solution.

We also have for µ → ∞:

v− = vs
But from the circuit diagram, we have:

v+ = vs



Topic 9 – Op-amps and transistors

3

It therefore follows that:

v+ = v−
In other words, the voltages at the op-amp input terminals are identical

Or we can say that the differential input voltage of the ideal op-amp is zero

Note that from the property of the VCVS, the op-amp input currents are also zero

To summarise, for the ideal op-amp:

The constraints imposed on the circuit to which it is connected are:

v+ − v− = 0          and          i+ = i− = 0

The first equation is the same as that for a short circuit and the second is that for an open-circuit

This means that the two terminals act simultaneously like both a short-circuit and an open-circuit

For this reason, it is often said that the two input terminals form a virtual short-circuit

The fact that the input voltage is zero explains how a device having infinite gain does not
necessarily have a finite output voltage

Consider now the expression for the circuit output voltage:

� 

vo = vs + Ris
It depends on the independent sources vs and is and also on the passive element value R, but does
not depend on the ideal op-amp itself.

The amplifier output current io depends on is and on the load connected

Thus the op-amp output terminal behaves such as to provide the output voltage and output current
required by the rest of the circuit

The output terminal does not impose any constraint on its voltage or current but provides whatever
is required by the rest of the circuit

In order to work with the constraints imposed by an ideal op-amp, it is helpful to introduce a special
model called a nullor

1.4 Nullor Model for the Ideal Op-amp

The virtual short-circuit with v = 0 and i = 0 that describes the op-amp input port may be
represented by the following symbol:
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This two-terminal element is called a nullator

The op-amp output port for which the voltage and current do not depend on the amplifier itself but
on the surrounding circuit elements may be represented by the following symbol:

This two-terminal element is called a norator

The norator is a two-terminal element that does not have any effect whatsoever on the voltage
across it or the current through it though it does provide a path for current to flow

By drawing the nullator and the norator symbols on a circuit diagram in place of the op-amp, we
represent accurately the constraints imposed by the ideal op-amp

Because the nullator and the norator always occur in pairs in an op-amp circuit, we give the
combination of these two elements: the name nullor

The infinite-gain VCVS at the output of an op-amp is grounded, so the nullor model for the op-amp
has one terminal of the norator grounded as shown:

Example 11

Find a nullor equivalent for the op-amp sub-circuit shown:

Solution

We apply test sources and replace the op-amp by its nullor equivalent:

We note that the nullator holds the voltage at the middle node to zero

Furthermore, as the current into the nullator is zero, the current through R2 is the same as that
through R1
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Applying KCL at the middle node:

0 − vi
R1

+
0 − vo
R2

= 0

vo
vi

= −
R2
R1

We can also write:

� 

i1 = vi − 0
R1

= vi
R1

The second equation describes a resistance of value R1 between the input terminal and ground

The first equation describes a VCVS from the output terminal to ground (vo is independent of the
current io and proportional to vi

Thus, the equivalent sub-circuit is as shown:

The practical importance of equivalent sub-circuits is that they allow one to design and analyze
circuits rapidly by recognizing their topologies

Consider another example:

Example 5.12

Compute the voltage vo, and currents ia and io in the circuit shown:

Solution

We can quickly analyze this circuit for vo by simply noting that this quantity is the negative of the
ratio of the "feedback" resistor (8 kΩ) to the "input" resistor (2 kΩ) multiplied by the value of
voltage at the input terminal (2 V)

Thus, it is –8 V

We can then use Ohm's law to find that ia = –8 V/2 kΩ = –4 mA

We can find io by observing that the top middle node is held to zero volt by the op-amp input
terminals and that the current into the minus (or inverting) op-amp terminal is zero. This gives a
current of 8 V/8 kΩ = 1 mA from left to right through the 8 kΩ resistor

KCL at the output node gives io = 1 mA – Ia = 1 mA – (– 4 mA) = 5 mA

The nullor equivalent circuit with the currents indicated is as follows:
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If the 2 kΩ resistor at the output of the op-amp was changed to a 1 kΩ resistor, the op-amp output
voltage (–8 V) would not change because it is governed by the voltage gain equation; therefore, the
current in the load resistor would double to – 8 mA and the op-amp output current io would increase
to 9 mA;  this illustrates the fact that the op-amp output current does not have any constraint – it
provides any current demanded by the rest of the circuit

It is a fact that op-amps limit the current flowing in their output terminals, usually to a value of a
few tens of mA

For this reason, a practical range of values for resistors in an op-amp circuit is on the order of a few
hundred Ω to a few MΩ

Typical values are in the kΩ range, as we have seen

1.5 The Inverting Amplifier Topology

The sub-circuit shown below appears as part of a wide range of op-amp circuits encountered in
practice:

Let's see what its characteristics are

We replace the op-amp symbol by its nullor equivalent and attach two test current sources (a
voltage source would not work at the input because of the nullator constraint of zero voltage):

We see at once that vi = 0 V, regardless of the value of the input current ii

Because the current into the nullator is zero, the entire current ii flows from left to right through the
feedback resistor

Hence, we have vo = –Rii independent of the current io

This means that there is an equivalent CCVS between the output terminal and ground

The complete equivalent sub-circuit is as follows:
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Notice that resistor R has become the trans-resistance of the controlled source

Example 13

Find the voltage vo for the circuit shown:

Solution

This circuit can easily be analyzed by applying KCL to the central node assuming a nullor model
for the op-amp:

� 

0 − v1
R1

+ 0 − v2
R2

+ 0 − v0
R0

= 0

Hence:

� 

v0 = −v1
R0
R1

− v2
R0
R2

Thus, our circuit output is the weighted sum of the two input voltages

Clearly, we could add additional resistors to sum any number of additional input voltages

The currents flowing in the circuit are as follows:

We can solve the same example by using the CCVS equivalent for the op-amp and its feedback
resistor Ro:

We can immediately see that the currents in the two input resistors add together to produce ii and
hence obtain the expression for v0:

� 

v0 = −R0ii = −R0
v1
R1

+ v2
R2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
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1.6 The Basic Non-inverting Amplifier Topology

We now investigate another topology the non-inverting topology; in this case the input signal is fed
to the + input terminal of the op-amp

Example 14

Find an equivalent sub-circuit for the circuit shown:

Solution

We attach a test source at the input and one at the output and use the nullor model for the op-amp:

We have used a voltage source at the input because the input current is constrained to be zero by the
nullator:

The nullator forces the voltage at the junction of the two feedback resistors to be the same as the
input voltage vi

We can apply KCL at this node:

� 

vi
R1

+ vi − vo
R2

= 0

Hence:

� 

v0 = v1 1+ R2
R1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

Because the input current of the whole circuit is zero independently of the input voltage, there is an
equivalent open circuit between the input terminal and ground

The output voltage obeys the above equation independently of the output current io, so we see that
there is an equivalent VCVS connected between the output terminal and ground

Thus, the equivalent circuit is as follows:



Topic 9 – Op-amps and transistors

9

We see that it is non-inverting (the plus sign is at the top and the voltage gain is positive)

Unlike the inverting voltage amplifier, it presents an open circuit at the input; thus, it is exactly
equivalent to an ideal voltage-controlled voltage source

The voltage gain cannot be less than unity for the present configuration, whereas it can be less than
unity for the inverting topology

1.7 The Voltage Follower (or Unity Gain Buffer)

If in the non-inverting amplifier circuit, we let R1 → ∞, we see that the voltage gain approaches
unity, independently of R2

Thus, we simply let R2 = 0

This gives the following circuit:

For this circuit:

vo = vi
This circuit is called a unity gain buffer or voltage follower

The nullor equivalent circuit is as follows:

Thus we can see that the input current is zero and the output current is provided by the norator at
the amplifier output; the output current depends on the load connected

The voltage follower can therefore have substantial current gain

Although the voltage buffer does not provide any voltage gain, it is a useful configuration, as shown
by the following example:

Example 15

A signal source with Thevenin equivalent voltage and resistance of 2 V and 1 MΩ has to be
connected to a 1 kΩ load

Find the load voltage vL and the power absorbed by the load resistor RL for both circuit
configurations shown:

          

Solution

For the circuit on the left, we use the voltage divider rule to obtain the voltage vL:
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� 

vL = 1 kΩ
1 MΩ+ 1 kΩ

× 2 V = 0.002 = 2  mV

The power absorbed by the load resistor is:

� 

PL = vL
2

1 kΩ
= 4 ×10−6

1×103 = 4 ×10−9 = 4  nW

Now let's look at the circuit on the right above:

It is the same as the one on the left with the insertion of a unity gain buffer between the source
elements and the load resistor RL

The buffer presents an open circuit to the Thevenin equivalent of the source, so we see that the
current through the 1 MΩ resistor is zero; thus, there is no voltage drop across it

Therefore, the voltage at the positive input terminal of the op-amp is the source value, 2 V

This same voltage is transferred to the load resistor; thus:

� 

vL = 2  V

The power absorbed by the load resistor is:

� 

PL = vL
2

1 kΩ
= 4

1×103 = 4 ×10−3 = 4  mW

This is an increase in delivered voltage and power by factors of 1000 and 106, respectively

2 DERIVING THE NULLOR FROM DEPENDENT SOURCES

We have seen that the VCVS and the nullor are related; we now explore this relationship

Consider the four types of dependent source:

                     

VCVS VCCS CCVS CCCS

We now let the gain of each type of dependent source tend to infinity, while assuming that the
source voltage vo and the source current io always remain finite

Then we can write:

VCVS:  vo = µvx             ∴vx =
vo
µ

→ 0   for   µ→∞

VCCS:  io = gmvx           ∴vx =
io
gm

→ 0   for   gm →∞

CCVS:  vo = rmix            ∴ ix =
vo
rm

→ 0   for   rm →∞

CCCS:  io = βix              ∴ ix =
io
β
→ 0   for   β → ∞

Hence, we see that, for the voltage-controlled devices (VCVS and VCCS), their infinite gain forces
their input voltage to zero
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However, voltage-controlled devices (VCVS and VCCS) always behave like an open-circuit at their
input irrespective of their gain, and hence their input current is always zero

Hence, for these voltage-controlled sources with infinite gain, both the input voltage and the input
current are zero

It is also shown above that for the current-controlled devices (CCVS and CCCS), their infinite gain
forces their input current to zero

But current-controlled devices (CCVS and CCCS) always behave like a short-circuit at their input
and hence their input voltage is always zero

Hence, for these current-controlled sources with infinite gain, both the input voltage and the input
current are zero

Thus, for all four controlled sources, both the input voltage and the input current are zero

Hence the input terminals of all four controlled sources behave like a nullator

Consider now the output terminals of the four controlled sources

We can now write:

VCVS:  vo = µvx  →∞× 0 = arbitrary  for   µ→∞
VCCS:  io = gmvx →∞× 0 = arbitrary  for   gm →∞
CCVS:  vo = rmix  →∞× 0 = arbitrary  for   rm →∞
CCCS:  io = βix    →∞× 0 = arbitrary  for   β → ∞

In the limit as the gain parameters becomes infinite and the input variable becomes zero, the output
variable in each case becomes arbitrary (or indeterminate)

We see that, for the controlled voltage sources (VCVS and CCVS) with infinite gain, the output
voltage becomes arbitrary

However, for voltage sources of any gain the output current is always arbitrary

Hence, for these sources, both output voltage and output current are arbitrary

It is also seen that for the controlled current sources (VCCS and CCCS) with infinite gain, the
output current becomes arbitrary

However, for current sources of any gain the output voltage is always arbitrary

Hence, for these sources too, both output voltage and output current are arbitrary

Hence, for all four sources with infinite gain, the output voltage and output current are arbitrary

In other words they place no constraints on their output voltage nor on their output current; output
voltage and output current are determined by other elements in the circuit

It follows that the output terminals of all four controlled sources behave like a norator

Hence, we have shown that each of the dependent sources when their gain is infinite is equivalent to
the nullor:

Note that, if the nullor were the model of an op-amp, then the norator is grounded
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3 SOME PRACTICAL ASPECTS OF OP-AMPS; STABILITY AND FEEDBACK

3.1 Introduction

In all circuits studied so far, there was a "feedback resistor" connected between the output of the op-
amp and the negative input terminal; this is no coincidence, as we shall now show

Consider the two sub-circuits shown:

          

The only difference between the two is the feedback resistor R2: it is returned to the negative op-
amp input in one and to the positive input in the other

If the op-amp is ideal in both circuits then both are equivalent to the same nullor equivalent circuit
shown:

Hence, with an ideal op-amp the circuits should behave the same

However, no real circuit behaves in an ideal fashion

In practice, the two circuits behave quite differently; the main difference is their stability properties

In order to investigate stability of a circuit, we de-activate all independent sources, in this case the
input voltage source vi

Each circuit has a feedback loop, going from an op-amp input terminal, through to the output
terminal of the op-amp, then through the resistor R2 and then back to the same op-amp input
terminal

In order to explore circuit stability, we cut the feedback loop and insert a test source in order to
determine the loop gain; we now make the cut in the lead feeding into the input terminal of the op-
amp:

     

The test signal vt is amplified by the amplifier, and comes back through R2 to its starting point
where we label the voltage vf (for feedback voltage):

We represent the op-amp by a VCVS having a finite voltage gain µ

Performing this procedure for the circuit on the left and on the right, we have:
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v f (left ) = −
µR1

R1 + R2
vt = −µFvt                v f (right ) = +

µR1
R1 + R2

vt = +µFvt

F is the voltage division ratio which determines vf from vo; F is called the feedback factor:

F =
R1

R1 + R2
We define the loop gain by the equation:

� 

LG =
v f
vt

We see that the circuit on the left above has loop gain:

LG(left ) = −
µR1

R1 + R2
= −µF                LG(right ) = +

µR1
R1 + R2

= +µF

We say that the circuit has positive feedback if LG > 0 and negative feedback if LG < 0

Since F and µ are positive, the left circuit has negative feedback and the right circuit has positive
feedback

3.2 Negative and positive feedback

In order to determine the effects of positive and negative feedback, consider that we re-join-up the
circuit where we broke it and remove the test source vt at the same time, but we remember that the
loop gain is negative and positive for the left and right circuits respectively

Since there is no independent source, we can assume that all voltages and currents are zero

We then assume that there is a source of interference, perhaps a mobile phone transmitting, and that
the signal is picked up by the wire connected to the op-amp input terminal

In the case where there is positive feedback, the interfering signal will be amplified as it traverses
the loop and will appear instantaneously at the point where the interference was picked up
considerable amplified and in phase with the interference signal; this amplified signal will in turn be
amplified again; the result is that the voltages in the circuit will increase uncontrollably until they
are limited by the power supply voltage of ±5 V or ±15 V; the circuit will cease to operate correctly
as an amplifier of the input signal

Consider now the case where there is negative feedback; the situation will be similar up to the point
where the amplified interference signal appears again at the op-amp input, but in this case the
amplified signal is 1800 out of phase with the interfering signal and will therefore tend to cancel the
effect of the interfering signal

The negative feedback case requires some assumptions about the dynamics of the op-amp for a
precise analysis, but it may be shown that with negative feedback, following a burst of interference,
all voltages and currents will tend towards their DC steady state values of 0 V and 0 A; in other
words the circuit is stable

Depending on the dynamics of the op-amp, output voltage versus time for a stable and unstable
circuit could have typical forms:

vo t( ) stable( ) = Ae
−t τ                vo t( ) unstable( ) = Ae

+t τ

The corresponding waveforms are as follows:
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So far, we have considered a circuit which may have either negative or positive feedback

In practice, circuits often have elements connected to both input terminals, which means that both
positive and negative feedback is occurring

Such cases can be represented by a generic op-amp circuit:

For this circuit, we split the feedback loop as follows:

Then we define different feedback factors for the + and – input terminals of the op-amp:

F+ =
R1

R1 + R2
               F− =

R3
R3 + R4

where:

� 

v+ = F+vo          v− = F−vo
The condition for a circuit to be stable is:

F− > F+
If F− < F+ , the circuit is unstable

If F− = F+ , we say that the circuit is on the borderline between stability and instability (or
marginally stable/unstable)

3.3 Example of Stability Testing

We show a circuit which realises negative resistance being tested by a v-source and by an i-source
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To test the stability, we consider an equivalent circuit with sources deactivated:

          

For the voltage driven circuit on the left, we have:

� 

F+ = 0          F− = 0.5

Since F– > F+, the circuit is stable

For the current driven circuit on the right:

� 

F+ = 1          F− = 0.5

Since F+ > F–, the circuit is unstable

Notice that stability can be different when a circuit is driven by a voltage source and by a current
source

This example circuit is said to be short-circuit stable and open-circuit unstable

This analysis shows that the source forms an important part of the circuit when determining stability

When op-amp feedback circuits contain inductors and capacitors as well as resistors, and when op-
amp models have finite bandwidth and therefore time constants, then the feedback factors have
phase as well as magnitude

In that case, the approach has to be more general than in this simple preliminary study

4 NODAL ANALYSIS OF CIRCUITS WITH OP-AMPS

4.1 General approach

For analysis, an ideal op-amp can be replaced with any of the four types of dependent sources,
provided that the gain parameter is allowed to become infinite

Thus, when we are carrying out nodal analysis, we can choose any of the four dependent sources as
a model

Voltage constraints are easier to work with in nodal analysis, so we will choose a voltage-controlled
model

Because each voltage source reduces the number of nodal equations by one, we will choose it to be
a voltage-controlled voltage source (VCVS)
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Consider an example circuit containing an op-amp:

First we check stability of the circuit: we deactivate both voltage sources and compute the positive
and negative feedback factors F+ and F–; these turn out to be F+ = 1/3 and F– = 2/3; hence the circuit
is stable

Our first step in the analysis using the nodal method is to replace the op-amp by its (grounded)
nullor equivalent:

It is sometimes helpful to alter the circuit layout slightly to an equivalent form with a ladder
structure:

Now we temporarily replace the nullor with its VCVS equivalent:

We see there are two non-essential nodes, one super-node, and one essential node; thus, we
anticipate two KCL equations
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Note that the dependent source is treated like an independent source when determining non-
essential nodes

Returning to our nullor version of the circuit, we prepare it for nodal analysis as shown:

We must write one equation at the super-node and one at the essential node

However, the voltages on either side of a nullator are the same and this means that the super-node
and the essential node have the same voltage, which we label as v

Although their voltages are the same, we apply KCL to each node separately, remembering that the
nullator carries zero current

� 

v − 8
2

+ v
2

+ v + 2 − vo
2

= 0    (for supernode)

v
6

+ v − vo
3

= 0    (for essential node)

Note that we have used the self-consistent units of kΩ, mA, and V

We can easily solve the KCL equations to get v = 4 V and vo = 6 V

The solution can easily be checked by looking at the circuit

To establish confidence, we now repeat the above analysis using a VCVS with finite gain, and then
let the VCVS gain go to infinity in order to represent the ideal op-amp

4.2 Justification for the Nullor Model

The version of the circuit with the op-amp replaced by a finite gain VCVS is as follows:

where now node voltages v1 and v2 in general have different values

The nodal equations at the super and essential nodes are:

� 

v1 − 8
2

+ v1
2

+ v1 + 2 − vo
2

= 0    (for supernode)

v2
6

+ v2 − vo
3

= 0    (for essential node)

Untaping the VCVS we can write:



Topic 9 – Op-amps and transistors

18

� 

vo = µ v1 − v2( )
Using this equation to eliminate vo in the above equations, we have the matrix equation:

� 

3− µ µ
−2µ 3+ 2µ
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
v1
v2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

6
0
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ 

Solving, we have:

� 

v1
v2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

2 3+ 2µ( )
3+ µ
4µ
3+ µ

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

Consequently, we can write:

� 

vo = µ v1 − v2( ) = 6µ
3+ µ

Computing the limit as µ → ∞, we see that v1 = v2 = 4 V and vo = 6 V, as before

It may be shown that repeating the analysis with the op-amp replaced by any of the four types of
controlled source with a finite gain and letting gain → ∞ leads to the same result

Example16

Solve the circuit below using nodal analysis:

Solution

The feedback factors are F– = 1 and F+ = 1/14; hence this op-amp circuit is stable

We apply nodal analysis using a nullor to replace the buffer:

We have labelled the node at the top of the norator with the symbol vc, for we are considering it
(from a topological point of view) to be a VCVS (with gain → ∞)

Note that due to the norator, node vc is a non-essential node

The KCL equations at the two essential nodes v1 and v2 are, therefore:

� 

v1 − 2
1

+ v1
2

+ v1 − v2
2

+ v1 − vc
2

= 0    (for node v1)

v2
4

+ v2 −12
1

+ v2 − v1
2

= 0    (for node v2)
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Putting vc = v2 and solving, we have:

� 

5
2

−1

− 1
2

7
4

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

v1
v2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

2
12
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

The solution to this equation is: v1 = 4 V and v2 = 8 V

5 TRANSISTOR CIRCUITS

5.1 Introduction

The transistor is certainly a very important circuit component because it is used to construct all the
key building blocks of digital and analogue circuits from logic gates to operational amplifiers

It is also an important component in its own right for analogue circuit design both in integrated
circuits and non-integrated circuits

Transistors are of two main types:

The bipolar junction transistor (BJT) was invented in 1947 and was the main active device until
about 1970

The field effect transistor (FET) became important in about 1970 in the form of CMOS-FETs
(complementary metal-oxide-semiconductor - FETs) and rapidly took over from the BJT for most
digital and analogue applications

The reasons for the success of CMOS-FETs is their low power consumption, ease of design and
their small size which allows the development of very large scale integrated (VLSI) circuits with
over 106 transistors on a single chip

Transistors in most applications need to be operated with power supplies; these are usually DC
voltage sources or DC current sources; application of suitable DC sources to a transistor to allow it
to operate is called biasing and the components that do this constitute the bias circuit

Transistors are active devices which are able to amplify a small input signal to produce a larger
output signal

A small AC input signal can effectively modulate the DC power supplied to the transistor from its
biasing circuits so that some of the modulated DC power appears as a transistor AC output signal

This means that the input and output signals of a transistor consist of both DC (bias) and AC
(signal) components superimposed

In many applications, it is important that the relationship between the AC input signal and the AC
output signal is linear; for instance to avoid distortion in an audio application

It is thus common practice to separate the linear AC operation of the transistor and produce a linear
AC equivalent circuit which describes this important aspect of behaviour

In this section we will look at some linear AC equivalent circuits for transistors and apply the
methods of circuit analysis to determine AC responses for given AC input signals

The term 2 course ‘Analogue Electronics’ will provide a detailed study of different types of
transistors, the design of suitable biasing circuits and the extraction of linear AC equivalent circuit
models of the type we use here

We emphasise again that the transistor circuits we give here will not work as given because power
supplies are not included at this stage; this material is presented to provide familiarity in working
with linear AC equivalent circuits for transistors which will be used extensively in later courses
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5.2 The Bipolar Junction Transistor (BJT): Basic Operation

The circuit symbol for the bipolar junction transistor (BJT) is depicted below:

The three terminals are labelled E for emitter, B for base, and C for collector

BJTs are of two types called NPN and PNP depending on their construction; in the symbol for an
NPN transistor, the arrow on the emitter points from the base and towards the emitter (as above); in
the symbol for a PNP transistor, the arrow on the emitter has the reverse orientation

The operation of the transistor can be explained briefly as follows:

Consider an external current iE in the form of electrons to be injected into the device from the
emitter

99 % of the electrons that are injected go across the base region and emerge from the collector
terminal; this fraction of electrons is denoted α; thus the collector current is αiE

However, 1 % of the electrons that are injected at the emitter undergo a process called
recombination which leads to base current (1 – α)iE which is much smaller than iE and iC

In reality, the base current would be the input signal and emitter current iE or collector current iC

would be the output signal, an output signal about 100 times as large as the input base current

Recalling that electron motion to the right constitutes conventional current to the left, we see that
the three terminal currents have the directions shown in the diagram above

5.3 BJT Models

We are now in a position to form a model for a BJT:

It consists of two diodes and a current-controlled current source (CCCS)

The current source imposes the required relationships between the terminal currents:

� 

iC = αiE
iB = 1−α( )iE

In all the working so far, currents have been represented using lower-case 'i' and upper-case E, B
and C.  By convention, this implies that the currents are total instantaneous currents, that is they
consist of the DC components due to the bias circuits plus the AC components due to the signal

We now split the model for total instantaneous currents into separate DC and AC models

The diode will be covered in the Analogue Electronics course.  Here, we simple state that the diode
has a voltage drop of around +0.7 V when current is flowing in the forward direction (in line with
the arrow in its symbol) and is approximately equivalent to an open-circuit (hence zero current)
when the applied voltage is in the reverse direction
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An NPN transistor is biased so that the collector is at a more positive voltage than the base and
therefore the diode DC is reverse biased and may be ignored

The diode DE is forward biased and therefore the transistor base voltage tends to be about +0.7 V
with respect to the emitter voltage

Hence for the DC model, we can replace DE by a 0.7 V voltage source V0:

Note that this DC model can not predict AC signals correctly; it is useful however for design of bias
circuits.  In the DC model, currents are represented by upper-case I and upper-case E, B and C

For the AC small signal model (which will be derived properly in the Analogue Electronics course),
we can replace DE by a resistor re that depends upon the DC value of emitter current:

Note that this AC model cannot predict DC signals correctly; for instance, the fact that the base
voltage is around 0.7 V higher than the emitter is no longer apparent.  In the AC model, currents are
represented by lower-case i and lower-case e, b and c

It may be shown that the re is given by:

re =
VT
iE

     where     VT = 25  mV

where iE is the total instantaneous emitter current.  Since this current consists of a DC bias value IE

with an AC signal component ie superimposed then, strictly, re will vary with the AC signal
waveform variations
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The analysis can be simplified considerably if we perform a small-signal AC analysis

In this approach, we assume that the amplitude of the AC part of the signal ie is sufficiently small
compared with the DC value IE that the variations in re are negligible and it can be assumed to be
constant governed by the bias or DC value IE

This effectively means that we can treat the circuit as linear even though it is strictly non-linear

From now on, we  concentrate upon the AC small signal model and its analysis

Example 20

Find the small signal input resistance rin = ve/iin and voltage gain Av = vc/ve of the BJT circuit
shown:

Notes:

1) This is a small signal AC equivalent circuit; the DC sources have already been de-activated
for the analysis and are not shown

2) In this circuit, we say that the transistor is in common base configuration since the base
terminal is the reference node for both the input and output voltages of the transistor

3) Input resistance is the resistance presented to the input voltage source by the amplifier

4) Voltage gain is the ratio of the output (collector) voltage vc to the input (emitter) voltage ve

Solution

We first replace the transistor symbol by its small signal equivalent circuit:

Note that we use an upper-case R to denote circuit elements and lower case r to denote component
within elements models

There is only one essential node, the output terminal (collector terminal of the BJT) – so only one
KCL nodal equation is required:

� 

vc
Rc

+ αie = 0

The controlling variable ie for the CCCS can be expressed in terms of the input source voltage ve:

� 

ie = − ve
re

Hence:

� 

vc = αRc
re

ve
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Thus, the small signal voltage gain is:

Av =
vc
ve

=
αRc
re

The A stands for amplification and the v refers to the fact that it is voltage that is being amplified

The current gain (Ai = ic/ie) is equal to α ≅ 0.99

Finally, the input resistance of the circuit is given by:

� 

rin = ve
−ie

= re

Let's get some idea of practical values

We assume that the transistor is biased by a biasing circuit (not shown) such that the DC value of
emitter current IE is 1 mA

Then we can immediately compute:

rin = re =
VT
IE

 = 0.025
0.001

= 25  Ω

and:

Av =
vc
ve

=
αRc
re

≈
Rc
re

≈
5000
25

≈ 200

Thus, the collector voltage is much larger: than the emitter voltage

Notice that the input source establishes a current ie in the low-valued emitter diode resistance re, and
the BJT reproduces that same current in the much larger resistance Rc through the action of the
CCCS

It is from this principle that the name transistor comes: transferring current through a resistor

Though the voltage gain of the common base circuit is large, the input resistance is small

Thus, if the Thevenin resistance of the input source is non-zero, a sizable voltage drop will occur at
the input, and the overall voltage gain will be reduced

This is a disadvantage of the configuration

Another is the fact that the current gain is less than unity

The common-emitter configuration overcomes these limitations

5.4 The Common Emitter Small Signal Model for the BJT

Suppose we twist the BIT around so that the base terminal is the input terminal:

Since the base current is given by (1 – α)iE and α ≅ 0.99, then the input current iB is very small
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We would therefore expect that both the current gain and the input resistance would be much higher
than for the common base circuit

It is helpful to define a new parameter β which is the current gain in common-emitter configuration:

β =
iC
iB

=
αiE

1−α( )iE
=

α
1−α

Thus for a typical value for α of 0.99, then β will be 0.99/(1 – 0.99) = 99

We have been working with total instantaneous variables, but the same relationship holds, of
course, for small signal ones

Expressing the CCCS current expression in terms of β, we have the small signal equivalent circuit
shown:

5.5 The Small Signal Hybrid–! Model for the BJT

Since in common-emitter configuration the emitter of the transistor is usually grounded, analysis is
easier if the controlled current source is connected to the emitter rather than to the base terminal

We can replace the single current source between collector and base by two current sources of same
current value where one is connected from collector to emitter and one from emitter to collector:

The current through re is ib + βib = ib(1 + β); hence the voltage between the B and E terminals is:

vbe = reib 1+ β( )
Since the current flowing between the b and e terminals is ib, it follows that there is an equivalent
resistance between the B and E terminals of:

� 

rπ = vbe
ib

= re 1+ β( )

This leads to the hybrid-$ model for the transistor:



Topic 9 – Op-amps and transistors

25

Example 21

Find the small signal voltage gain Av = vc/vb and the small signal input resistance of the common
emitter voltage amplifier whose small signal equivalent circuit is shown:

Solution

Just as for the common base circuit, we replace the BJT symbol with its small signal equivalent
circuit, in this case the hybrid–$ model:

There is only one essential node the collector terminal of the BJT

The nodal equation is:

� 

vc
Rc

+ βib = 0

We now express the controlling variable for the controlled source ib in terms of the independent
source variable vb:

� 

ib = vb
rπ

These two equations give the voltage gain:

Av =
vc
vb

=
−βibRc
ibrπ

= −
βRc
rπ

Substitution of the expression for r$ in terms of re shows that the voltage gain is the same as that for
the common base amplifier apart from the minus sign:

Av = −
βRc
rπ

= −
βRc

re 1+ β( ) = −
αRc
re

Note that β =
α
1−α

reverses to α =
β

1+ β
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The minus sign in the voltage gain expression for the common-emitter amplifier implies that there
is a 180o phase shift between the output and input signals

However, the input resistance of the common emitter amplifier r$ is (β + 1) times as large as the
value for the common base circuit re

The current gain is clearly equal to β, a factor of β + 1 times as large as for the common base circuit
since β/α = 1/(1 – α) = β + 1

Thus, the common emitter circuit has the same voltage gain magnitude, a higher current gain, and a
higher input resistance

These factors lead to the highest power gain that can be produced by a transistor and an amplifier
circuit which can be readily cascaded to lead to enormously high overall gains, as required, for
instance, in a radio receiver

5.6 The Ideal BJT Model

For an ideal BJT, the CCCS in its model would have an infinite β just as an ideal op-amp is
equivalent to a VCVS with infinite voltage gain

Let's get some idea of how to treat such a case by looking more closely at the hybrid–$ model:

Let's convert the controlling variable for the controlled source from ib to vbe

This gives the CCCS constraint equation:

� 

βib = β vbe
rπ

= β
rπ
vbe = β

β +1( )re
vbe = α

re
vbe = gmvbe

where

� 

gm = β
rπ

= α
re

≈ 1
re

is called the transconductance which depends on re and is practically independent of β

The resulting hybrid–$ model with a VCCS is as follows:

If we let β → ∞, then r$ → ∞ and we have the following equivalent circuit:
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Notice that the transconductance has the unit Siemens (inverse Ω)

The subscript m stands for mutual which means that the current in one pair of terminals has
something mutual (in common) with the voltage between another pair

It is synonymous with the trans- in transconductance

The hybrid–$ model in terms of gm we have derived is a good model for describing field-effect-
transistors (FETs) and is immensely important for this reason

Note that if the BJT becomes fully ideal then we have gm → ∞; under this condition, the BJT (or
FET) may be replaced by a nullor as was done for the ideal op-amp

However, the gap between practical transistor behaviour and ideal behaviour predicted using a
nullor equivalent is much greater than in the case of op-amps

5.7 The PNP BJT

BJTs occur in two forms, the NPN device we have been considering and the PNP device

The model and symbol for the PNP BJT are as follows:

          

We see that the directions of all total instantaneous currents are reversed compared with the NPN
transistor

This means that all bias voltages and currents are the negative of those for an NPN transistor

However, it does not affect the small signal AC operation and the small signal AC model is
identical to that for the NPN BJT

Thus the same small signal AC models may be used for NPN and PNP transistors

6 FREQUENCY RESPONSE OF OP-AMP AND TRANSISTOR CIRCUITS

6.1 General

We have developed op-amp and transistor circuits with the resistor as the sole passive element.  We
now introduce the capacitor and the inductor to these circuits.  Then, we will look at the intrinsic
frequency response of the op-amp itself.  We begin by considering examples of circuits containing
op-amps, resistors and capacitors, namely active-RC circuits.

6.2 Inverting op-amp topology

We begin by considering an example

Example 14:  Determine the voltage gain function vo/vi and sketch the Bode gain plot for the circuit
shown assuming that the op-amp is ideal:
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Solution

We first add a sinusoidal test source at the general frequency ω and draw the phasor equivalent
circuit:

A number of analysis approaches are possible: we could replace the op-amp by its nullor equivalent
and perform nodal analysis

However, our approach is to make use of the general equivalent for the op-amp inverting
configuration which we derived assuming resistors

We now replace the resistors by general impedances:

The equivalent circuit we derived previously with resistors replaced by impedances is as follows:

We now let:

� 

Z1 jω( ) = R          Z2 jω( ) = 1
jωC

Hence, the voltage gain is:

  

� 

Vo
Vi

= H jω( ) = −
Z2 jω( )
Z1 jω( )

= −
1
jωC
R

= − 1
jωCR

= j 1
ωCR

= 1
ωCR

∠90

The phase is constant (at 90o) with respect to frequency, so we do not need to plot it

The gain plot is a straight line with a slope of –20 dB/decade:
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This circuit is referred to as an integrator circuit; it may be shown that the output voltage is the
integral of the input voltage

� 

vo t( ) = 1
C

ic t( )dt∫ = 1
C

−
vi t( )
R

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ dt∫ = − 1

CR
vi t( )dt∫

RC is the integration time constant

Transient analysis can be used to show that the circuit is marginally stable; this means that the
circuit is not usable by itself, but it does form a vital building block in many types of system,
including active filters

Example 15: Find the voltage gain function for the following circuit and sketch the Bode plot:

Solution

This circuit is related to the one in the last example by interchange of capacitor and resistor:

The phasor circuit is:

This circuit has the topology of the general inverting configuration shown above but Z1 and Z2 are
interchanged

Hence, the voltage gain transfer function is:

  

� 

Vo
Vi

= H jω( ) = −
Z2 jω( )
Z1 jω( )

= − R
1
jωC

= − jωCR = ωCR∠− 90

The phase is again constant (this time at – 90o), so we will not plot it

The gain function rises linearly at 20 dB/dec as shown:
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This circuit is referred to as a differentiator circuit; it may be shown that the output voltage is the
differential of the input voltage

� 

vo t( ) = RiR t( ) = R −C
dvi t( )
dt

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = −CR

dvi t( )
dt

6.3 The non–inverting op-amp topology

We showed that the inverting amplifier configuration which we analysed previously using resistors
as elements could be generalised to the case of general impedances as elements

A similar generalisation is possible for the non-inverting configuration:

          

Note that for the non-inverting configuration, unlike the inverting configuration, the input
impedance is infinite

Example 12.16: Find the voltage gain function vo/vi for the circuit shown and sketch the linearised
Bode gain plot:

Solution

We first identify the circuit as having the non-inverting topology

Next, we identify the two impedances: Z1(jω) corresponds to the 25 kΩ resistor and Z2(jω) to the
100 kΩ resistor and l0 nF capacitor connected in parallel:

� 

Z1 jω( ) = 25 ×103           Z2 jω( ) =
105 × 1

jω10−8

105 + 1
jω10−8

= 1
jω10−8 + 10−5

Next, we use the equivalent circuit for the non-inverting amplifier to write the voltage gain:

� 

Vo
Vi

= H jω( ) =1+
Z2 jω( )
Z1 jω( )

=1+

1
jω ×10−8 +10−5

25 ×103
= jω ×10−3 + 5
jω ×10−3 +1

The Bode gain plot is as follows:
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Note here that the low frequency constant asymptotic gain is 20log(5) = 14 dB

The high frequency constant asymptotic gain (well above 5000 rad/s) is 20log(1) = 0 dB

6.4 Frequency Response of the Op–amp Itself

We have assumed so far that op–amp gain is independent of frequency, whether it is infinite (ideal
op–amp) or a constant finite value

We now explore the practical case where the op-amp has a non-infinite, or finite, bandwidth

We start by showing the op-amp terminal voltages:

The current into each of the input terminals is always zero; therefore, it is equivalent to the open
circuit shown in the phasor equivalent circuit:

This equivalent circuit for the op-amp includes the frequency response of the op–amp:

Vo = H jω( ) V+ −V−( )
H jω( ) = Ao

1+ j ω
ωa

=
Aoωa
jω +ωa

We can write the voltage frequency response function in Euler form:

H jω( ) = Ao
1+ ω ωa( )2

∠ tan−1 ω ωa( )

For ω → 0, we have:

H j0( ) = Ao
Thus Ao is the low frequency constant gain asymptote, or simply DC gain
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Fo ω = ωa, the real and imaginary parts in the denominator become equal defining a break
frequency as the gain begins to follow a –20 dB/decade asymptote of falling gain at higher
frequencies

The gain and phase asymptotes for the op-amp are as follows:

          

For the most common type of op-amp called the 741, the magnitudes of the parameters are:

Ao ≈ 105                fa =
1

2π
ωa ≈ 10  Hz

The model for the frequency response is a simple RC lowpass filter type of response called the
dominant pole model; in practice, most op-amps follow this characteristic quite well

We consider now the high frequency asymptote in more detail; let ω → ∞ in the op-amp frequency
response function:

H jω( )ω→∞ =
Aoωa
ω

This expression describes the high frequency –20 dB/decade asymptote

The frequency ω  at which this asymptote reaches a gain of unity (or 0 dB) is called the unity gain
cut-off frequency and designated GB or ωT

From the above, we have:

ωT = Aoωa

Because Ao is the low-frequency (or DC) voltage gain and ωa is the 3 dB bandwidth, ωΤ is also
called the gain bandwidth product

Sometimes one uses the Hertz form

� 

fT = Ao fa = ωT
2π

For the 741 type of op-amp, we have typically:

fT = Ao fa = 105 ×10  Hz = 106 = 1  MHz

Example 17

Find the voltage transfer function for the non-inverting op-amp circuit shown and sketch the Bode
gain plot assuming that the op-amp can be represented by its dominant pole model:
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Solution

We first replace the op-amp symbol with the non-ideal op-amp model:

This results in the phasor equivalent circuit shown:

Analysis can proceed using KCL and the voltage divider rule, but in this case we define a feedback
factor:

� 

F = R1
R1 + R2

and obtain:

� 

Vo = H ω( ) Vi −Vf( ) = H ω( ) Vi − FVo( )
Thus:

� 

Vo =
H ω( )

1+ FH ω( )
Vi

We next insert the explicit equation for H(ω); this results in:

Vo =
1

1 H ω( ) + FVi =
1

jω +ωa( ) Aoωa + F
Vi =

Aoωa
jω +ωa + FAoωa

Vi =
Aoωa

jω + 1+ FAo( )ωa
Vi

This leads to the closed loop voltage transfer function G(jw)

� 

G jω( ) = Vo
Vi

= Aoωa
jω + 1+ FAo( )ωa

We express this in a form similar to that of H jω( ) = Aoωa jω +ωa( ) :
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� 

G jω( ) =

Ao
1+ FAo

× 1+ FAo( )ωa

jω + 1+ FAo( )ωa
= Goωa

'

jω + ωa
'

where Go is the closed loop DC gain:

Go =
Ao

1+ FAo
≈
1
F

and ωa’ is the closed loop bandwidth:

ωa
' = 1+ FAo( )ωa ≈ FAoωa ≈

Ao
Go

ωa ≈
ωT
Go

We can immediately see that the gain of the op-amp itself has been reduced and the bandwidth
increased both by the same factor:

          

We have superimposed a plot of the open loop gain (the gain of the op-amp itself) over the gain plot
of the complete amplifier to allow comparison

Since the gain of the op-amp has been reduced by the same factor that the bandwidth has increased,
this means that corner point for the closed-loop response will always lie on the –20dB/dec
asymptote of the open-loop op-amp gain curve, as shown

The variable in the design is the feedback factor F which depends on the ratio of the resistors

For small values of F, the gain will be high and the bandwidth small; for high values of F, the gain
will be low and the bandwidth high; in all case, the corner point will lie on the amplifier’s –20
dB/dec asymptote

We can see now how op-amp circuits can possess a reasonably high bandwidth even though the
bandwidth of the op-amp itself may be as low as 10 Hz

For example, for the 741 op-amp, possible closed-loop gain and bandwidth combinations are as
follows:

Go fa
'

1 1 MHz

10 100 kHz

100 10 kHz

1000 1 kHz

If the bandwidth for a given gain requirement is not high enough, then a special wideband op-amp
would have to be used.
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7 FREQUENCY RESPONSE OF THE BJT

A popular model for the BJT that includes frequency effects is the hybrid–$ model:

It is obtained from the DC hybrid–$ model by adding two capacitances c$ and co

For operation in common-emitter mode, c$ is an input capacitance and co is a feedback capacitance
(from output to input)

Resistors r$ and gm and capacitors c$ and co are strictly functions of the instantaneous currents in the
transistor

However, we work with a small signal model with constant parameter values valid for the DC bias
point chosen

We consider an example circuit:

Example 19:  Find the voltage transfer function for the small signal BJT circuit shown and sketch
the Bode gain plot:

Assume that the BJT is well represented by its high frequency hybrid–$ model with the following
parameters which are valid at the chosen bias point:

r$ = 1 kΩ, c$ = 10 pF, co =0.1 pF, gm = 20 mS.

Solution

We replace the BJT symbol with the high-frequency small signal hybrid–$  model, resulting in the
time-domain equivalent circuit shown:

The phasor equivalent circuit is as follows:
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1 kΩ

1 kΩ 1 kΩ0.02 Vb

� 

1
jω10−13

� 

1
jω10−11

There are two nodes Vb  and Vo where KCL should be applied:

� 

Vb −Vi
1000

+ Vb
1000

+ jω10−11( )Vb + jω10−13( ) Vb −Vo( ) = 0

Vo
1000

+ jω10−13( ) Vo −Vb( ) = −0.02Vb

These simultaneous equations can be solved to obtain H(ω):

� 

H ω( ) = Vo
Vi

=
0.1 jω '−200( )

jω '( )2 +12.3 jω '( ) + 2

where ω’ = ω/109, in other words ω’ is in Grad/s units

In order to determine the Bode plot we must factor the denominator polynomial

In general, this requires a calculator or a computer but for the 2nd-order one as in this case, we can
use the quadratic formula or complete the squares:

H ω( ) = Vo
Vi

=
0.1 jω '− 200( )

jω '+ 0.17( ) jω '+12.13( )
The gain plot is as follows:

8 CONCLUSIONS

In this topic, we have given an introduction to circuits containing op-amps and transistors. We
introduced the nullor equivalent for the ideal op-amp and considered nodal analysis of circuits
containing op-amps.  We considered practical aspects of op-amps circuits, including feedback and
stability. We then looked at models for transistors.  Finally, we considered the frequency response
of op-amp and transistor circuits containing capacitors including a look at the frequency response of
the op-amp itself.


